Linear Algebra Examples

Convert to Trigonometric Form 2+7i+(-6+i)
2+7i+(-6+i)2+7i+(6+i)
Step 1
Subtract 66 from 22.
-4+7i+i4+7i+i
Step 2
Add 7i7i and ii.
-4+8i4+8i
Step 3
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 4
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 5
Substitute the actual values of a=-4a=4 and b=8b=8.
|z|=82+(-4)2|z|=82+(4)2
Step 6
Find |z||z|.
Tap for more steps...
Step 6.1
Raise 88 to the power of 22.
|z|=64+(-4)2|z|=64+(4)2
Step 6.2
Raise -44 to the power of 22.
|z|=64+16|z|=64+16
Step 6.3
Add 6464 and 1616.
|z|=80|z|=80
Step 6.4
Rewrite 8080 as 425425.
Tap for more steps...
Step 6.4.1
Factor 1616 out of 8080.
|z|=16(5)|z|=16(5)
Step 6.4.2
Rewrite 1616 as 4242.
|z|=425|z|=425
|z|=425|z|=425
Step 6.5
Pull terms out from under the radical.
|z|=45|z|=45
|z|=45|z|=45
Step 7
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(8-4)θ=arctan(84)
Step 8
Since inverse tangent of 8-484 produces an angle in the second quadrant, the value of the angle is 2.034443932.03444393.
θ=2.03444393θ=2.03444393
Step 9
Substitute the values of θ=2.03444393θ=2.03444393 and |z|=45|z|=45.
45(cos(2.03444393)+isin(2.03444393))45(cos(2.03444393)+isin(2.03444393))
 [x2  12  π  xdx ]  x2  12  π  xdx