Enter a problem...
Linear Algebra Examples
2+7i+(-6+i)2+7i+(−6+i)
Step 1
Subtract 66 from 22.
-4+7i+i−4+7i+i
Step 2
Add 7i7i and ii.
-4+8i−4+8i
Step 3
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 4
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 5
Substitute the actual values of a=-4a=−4 and b=8b=8.
|z|=√82+(-4)2|z|=√82+(−4)2
Step 6
Step 6.1
Raise 88 to the power of 22.
|z|=√64+(-4)2|z|=√64+(−4)2
Step 6.2
Raise -4−4 to the power of 22.
|z|=√64+16|z|=√64+16
Step 6.3
Add 6464 and 1616.
|z|=√80|z|=√80
Step 6.4
Rewrite 8080 as 42⋅542⋅5.
Step 6.4.1
Factor 1616 out of 8080.
|z|=√16(5)|z|=√16(5)
Step 6.4.2
Rewrite 1616 as 4242.
|z|=√42⋅5|z|=√42⋅5
|z|=√42⋅5|z|=√42⋅5
Step 6.5
Pull terms out from under the radical.
|z|=4√5|z|=4√5
|z|=4√5|z|=4√5
Step 7
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(8-4)θ=arctan(8−4)
Step 8
Since inverse tangent of 8-48−4 produces an angle in the second quadrant, the value of the angle is 2.034443932.03444393.
θ=2.03444393θ=2.03444393
Step 9
Substitute the values of θ=2.03444393θ=2.03444393 and |z|=4√5|z|=4√5.
4√5(cos(2.03444393)+isin(2.03444393))4√5(cos(2.03444393)+isin(2.03444393))